An Additive Problem with Piatetski-Shapiro Primes and Almost-Primes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small Gaps between Primes or Almost Primes

Let pn denote the nth prime. Goldston, Pintz, and Yıldırım recently proved that lim inf n→∞ (pn+1 − pn) log pn = 0. We give an alternative proof of this result. We also prove some corresponding results for numbers with two prime factors. Let qn denote the nth number that is a product of exactly two distinct primes. We prove that lim inf n→∞ (qn+1 − qn) ≤ 26. If an appropriate generalization of ...

متن کامل

Power Totients with Almost Primes

A natural number n is called a k-almost prime if n has precisely k prime factors, counted with multiplicity. For any fixed k > 2, let Fk.X/ be the number of k-th powers m 6 X such that !.n/ D m for some squarefree k-almost prime n, where !. ! / is the Euler function. We show that the lower bound Fk.X/ " X=.log X/ holds, where the implied constant is absolute and the lower bound is uniform over ...

متن کامل

Surfaces via Almost - Primes

Based on the result on derived categories on K3 surfaces due to Mukai and Orlov and the result concerning almost-prime numbers due to Iwaniec, we remark the following facts: (1) For any given positive integer N , there are N (mutually non-isomorphic) projective complex K3 surfaces such that their Picard groups are not isomorphic but their transcendental lattices are Hodge isometric, or equivale...

متن کامل

Additive Functions on Shifted Primes

Best possible bounds are obtained for the concentration function of an additive arithmetic function on sequences of shifted primes. A real-valued function / defined on the positive integers is additive if it satisfies f(rs) = f(r) + f(s) whenever r and s are coprime. Such functions are determined by their values on the prime-powers. For additive arithmetic function /, let Q denote the frequency...

متن کامل

Diophantine Approximation by Cubes of Primes and an Almost Prime

Let λ1, . . . , λs be non-zero with λ1/λ2 irrational and let S be the set of values attained by the form λ1x 3 1 + · · ·+ λsxs when x1 has at most 6 prime divisors and the remaining variables are prime. In the case s = 4, we establish that most real numbers are “close” to an element of S. We then prove that if s = 8, S is dense on the real line.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monatshefte f�r Mathematik

سال: 2003

ISSN: 0026-9255,1436-5081

DOI: 10.1007/s00605-002-0005-2